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Abstract

The quantification of biological and biochemical processes is a paramount

part of modern day healthcare; advances in the technologies involved are

constantly being sought after. The detection of these processes rely on the

techniques of electrochemical sensing.

This project is centered around the use of electrochemical biosensing and

involves the design of a test-bench to aid in the better understanding of

the processes of biosensing, its potential and its applications. The bulk of

the research in this project was done on the AD5940 evaluation board from

Analog Devices, which was chosen to perform the electrochemical sensing

measurements. The test-bench aims to represent the data from the board

in a user-friendly way through a graphical user interface (GUI) implemented

using the Raspberry Pi, which was chosen for its size, customizability and

versatility.

Amperometric and potentiometric measurements will be available to view

through real-time plots on the GUI. The amperometric process will utilise the

three electrodes configuration, connected via the provided pins to the Low-

Power Transimpedance Amplifier (LPTIA) circuit on the AD5940 board.

The potentiometric process will use the ion-selective electrode (ISE) con-

nected directly to an analog input pin, to be outputted through the analog

to digital converter (ADC).

Both measurements can be outputted to the Raspberry Pi by configuring the

evaluation board to switch between the two measurement blocks at regular
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intervals. The Raspberry Pi will interface with the evaluation board through

the SPI protocol, configuring the board by writing to the register responsible

for the inputs to the ADC multiplexer and receiving the outputs by reading

from the ADC raw result registers on the board. The GUI provides a function

to calibrate the sensors, required to display the potentiometric results.

The test-bench is tested: the potentiometric aspect of the system is tested

using standard alkaline 1.5V batteries or by directly using voltage pins from

the board. The amperometric part can be tested using the same batteries

connected across a resistor. It will be important to test that the communi-

cation between the board and the Raspberry Pi works for the test-bench to

be successful.
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Chapter 1

Introduction

1.1 Project overview

The number of robust technological devices specialising in bioelectrical and

electrochemical sensing is continually on the uprise, making these techniques

increasingly accessible, contributing to advances in various fields. The tech-

niques of biosensing target a variety of biological events, contributing not only

to advances in healthcare such as in neurological disease diagnostics [22] and

DNA sequencing [2], but in pathogen detection in agriculture [4], and also

aiding in environmental monitoring through detection of heavy metal pollu-

tants in water [1].

Such a robust device is the AD5940 from Analog Devices, offering high pre-

cision analysis of electrochemical cells. Although the analog front end (AFE)

comes equipped with its own integrated development environment (IDE) and

graphical user interface (GUI), this project aims to push the boundaries of

the system by exploiting the AFE’s existing functions and configuring it for

the purpose of an electrochemical sensing platform for analysis in blood and

sweat through building a test-bench.
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The importance of a test-bench lies in its purpose of providing a controlled

process for gauging a particular system and its outputs, hence minimising

inconsistencies between different measurements due to errors. A test-bench

should be as fully automated as possible, to diminish the likelihood of inte-

grating human involvement and therefore avoidable errors into the system.

In this project, the calibration system and the real-time output of data will

provide the means of acting as a control for the electrochemical measure-

ments.

1.2 Project deliverables

Due to limited resources, the project deliverables set at the start of the

project have since been altered, and is summarised as follows:

System requirements

• Explore the set up of concurrent amperometry and potentiometry mea-

surements using embedded, off-the-shelf components

• Test the individual components of the test-bench system and evaluate

the functionalities of the system as a whole

• A GUI for displaying real-time potentiometry and amperometry results

• The test-bench should enable user to calibrate output data by measur-

ing results from input pH

1.3 Report structure

The report will start with an overview of the project background and research

in chapter 2. The report will then begin on the details of the test-bench
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starting from the front-end of the system, the evaluation board, in chapter

3. This is followed by chapter 4, which details the software aspect of the

system, including the implementation of the communication protocol and the

GUI. The report then concludes by explaining and evaluating the way the

system was tested in chapter 5; comparing the end result of the project to

the initial deliverables in section 6.2, and finally elucidating the work that

can be done in the future to improvement the system in chapter 7.
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Chapter 2

Background

This chapter will touch on the aims and specifications of the

project, including the motivation behind the project’s aims and

a rough overview of the roles each component of the test-bench

plays in contributing to the overall system. The theories behind

electrochemical sensing is also explained. The chapter will

finish by elucidating on the high level design of the project,

which covers the results from the literature reviews done on each

aspect of the test-bench, elaborating on why each component

was chosen and how they are intended to be implemented in the

project.
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2.1 Project Specification

The overall aim of this project is to create a test bench with a user interface

that outputs the results from a given reaction in real time using the tech-

niques of amperometry and potentiometry concurrently.

For this project, an evaluation board was chosen to perform amperometric

and potentiometric measurements, namely the AD5940 analog front end sys-

tem from Analog Devices. This board was chosen as it was more recently

updated than other products such as the LMP91000EVM evaluation mod-

ule from Texas Instruments [14], and at a more affordable price than more

capable products such as the Emstat Pico module from PalmSens. More

importantly, this evaluation system was chosen for its potential to perform

amperometry and potentiometry simultaneously.

The motivation behind achieving concurrent sensing comes from the need to

improve accuracy in biosensing measurements. A key challenge in the mea-

surement of biomolecules in environments such as the human body is the

presence of interfering molecules. Additionally, factors such as biochemical

changes and changes in temperature will further affect results in electrochem-

ical sensing [16]. In environments such as the saliva, pH follows the circadian

rhythm of the body and depends on the individual’s dietary habits, the pres-

ence of gastric acid reflux, symptoms of diabetes and the conditions of their

oral health [5]. Concurrent sensing would improve accuracy by calibrating

in real-time using electrochemical biomedical readings [25, 23].

The inherent differences in the sensing techniques for potentiometry and am-

perometry result in advantages and disadvantages in electrochemical mea-

surements. In the case of glucose, amperometry provides a faster speed of
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detection, while potentiometric techniques would allow for a lower limit of

the concentration of the trace element for detection. Responses for glucose

using the two methods also differ, with potentiometry having a logarithmic

response while amperometry is linear with respect to the concentration of the

detected molecules. To sense concurrently means combining the advantages

in each of these individual methods to provide a more accurate analytical

platform. Therefore one of the main goals of this project is to configure the

AD5940 to perform concurrent sensing. With its potential to do so implicit

in its datasheet, albeit seemingly unavailable on the pre-existing graphical

user interface (GUI), SensorPal.

The system also required a means of outputting the results, the Raspberry Pi

was chosen to fulfill this purpose. The evaluation board interfaces with and

outputs onto the Raspberry Pi for a simple display of the results (e.g. pH

from potentiometric measurements) on a GUI in real time, communicating

through the serial peripheral interface (SPI).

2.2 Electrochemistry background

Chemical sensors are small sized devices comprising a recognition element,

a transduction element, and a signal processor capable of continuously re-

porting a chemical concentration [11]. Multiple electrodes are employed to

translate biorecognition responses into electrical signals [20]. The three elec-

trode cell is most often used, consisting of:

• The working electrode (WE) where the redox reaction will take place

[11]
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• The reference electrode (RE) which applies a constant potential against

which the working electrode’s potential is measured [11]

• The counter electrode (CE) which completes the electrical circuit and

acts as a current supply for the working electrode [11]

The voltage applied between the RE and WE is known as the bias voltage

of the cell. The potentiostat, shown in figure 2.1, plays an important role in

imposing the bias voltage in potentiometric and amperometric applications

of electrochemistry.

Figure 2.1: Diagram of a typical potentiostat [11]

The principles of electrochemistry is based on the redox phenomenon of ions

and elements which involves the gain and loss of electrons. This takes place

at the interface between the electrodes and the aqueous solution. It is this

behaviour that creates a potential difference between two electrodes and is

measured in potentiometry and the resulting current that is measured in am-

perometry.
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2.2.1 Potentiometry

Potentiometry is typically used for detecting the pH which is based on the

presence and concentration of H+ ions. Potentiometry is the measurement

of the potential between an ion-selective electrode (ISE) and a reference

electrode submerged in the analyte and the reference solution respectively,

where the potential difference is generated by the difference in concentra-

tions between the two solutions. The potentiometric circuit requires the

input impedance to be high and for there to be no current flow, which is

achieved by using an OpAmp [11]. For the purpose of potentiometric or pH

measurements, the ISE or AgAgCl electrode are used as the WE.

2.2.2 Amperometry

Amperometry is the measurement of the current resulting from a constant

voltage applied to the working electrode. This constant voltage can be found

using cyclic voltammetry, where the output current is measured as the refer-

ence electrode voltage is ramped up and down linearly. Around the voltage

at which the chemical reaction being observed takes place the current will

peak, as shown in 2.2.
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Figure 2.2: Demonstration of cyclic voltammetry [11]

The amplitude of the peak is directly proportional to the concentration of

the chemical species and are related by the Randles-Sevcik Equation (2.1).

ip = 2.69 × 105n
3
2AD

1
2Cv

1
2 (2.1)

Where n is the number of electrons transferred per molecule, A(cm2) is the

electrode surface area, C(mol/cm3) is the concentration, D(cm2/s) is the

diffusion coefficient, V (V/s) is the scan rate.

Amperometry is typically used for detecting the presence and concentrations

of small biomolecules such as lactate, glucose and ATP [25], the glucose

sensor being the most common amperometric sensor. Amperometry usually

works by coating the WE with a compound that produces a redox current

once it encounters the molecule being observed, in the case of the glucose

sensor, the enzyme Glucose oxidase is used [11].

The concentration of the molecules found through the detected current using

equation 2.1 can be used to find the pH, if the said molecules are hydronium
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ions. This is found using equation 2.2.

pH = log10[H3O
+] (2.2)

The transimpedance amplifier (TIA) is a critical part of the measurement of

the redox currents produced by the electrochemical reaction. The TIA con-

verts the resulting redox current from the potential difference between the

electrodes into an output voltage, as shown in figure 2.3. This is achieved by

passing the current, IF , through a resistor RF . In the AD5940, it is referred

to as RTIA.

Figure 2.3: Diagram of a typical transimpedance amplifier [11]

The AD5940 uses its low power 6-bit and 12-bit digital to analog convert-

ers (DAC) to set the bias voltages on the electrodes, whilst its potentiostat

amplifier and LPTIA are used to measure the current. For the purposes of
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amperometric measurements, the Platinum electrode is used as the WE.

2.3 High level design

2.3.1 System components

The system required a way to perform amperometry and potentiometry.

Building the circuits for these measurements was deemed to be time con-

suming, difficult and would stray from the project objective. Additionally,

many existing products offered sophisticated analog front end systems that

suited this project’s aims. For these reasons, the use of an evaluation board

was looked into.

Most evaluation boards included multiple communication interfaces such as

I2C, SPI and UART, some also had Bluetooth and WIFI modules. The

Raspberry Pi 4 Model B was chosen to be used in this project for its abilities

to communicate via those protocols. It was also chosen for its capabilities

in visually outputting the results from the evaluation board through a GUI.

Using the Raspberry Pi seemed more straightforward, its materials more nu-

merous and accessible than other platforms such as Arduino products. For

example, the Tkinter library seems a lot quicker and more straight forward

to use and integrate on the Raspberry Pi when compared to the ControlP5 li-

brary which requires the Processing IDE in addition to the Arduino IDE [31].

2.3.2 Selecting an evaluation board

An initial high level design was constructed from the research conducted

prior to the start of the project. The main component of this project is the
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evaluation board and several options were looked at, shown in table 2.1.

Board Producer Description Year of last update Price

LMP91000 [14] Texas Instruments Configurable AFE Po-
tentiostat for Low-Power
Chemical-Sensing Applica-
tions

2014 £101.93

AD5940 [6] Analog Devices High Precision, Impedance,
and Electrochemical Front
End

2020 £277.99

Emstat Pico [28] PalmSens Miniaturized potentiostat
module for electrochemical
measurements

2020 £1381.85

Table 2.1: Comparison of evaluation boards

Three different electrochemical evaluation boards are shown in table 2.1,

with varying producers, prices, functions, and some more current than oth-

ers. The LMP91000 from Texas Instruments is at the most affordable price.

It provides communication over the I2C interface [14] and seems relatively

straight forward to program. However, its data sheet was last updated in

December of 2014 which can mean that resources on the product is scarce

and outdated and would therefore be difficult to work with.

The Emstat Pico from PalmSens seems to be the most suitable for applica-

tions requiring concurrent sensing - concurrent sensing is explicitly stated as

possible in its datasheet, which weren’t the cases for the other two products.

Although its functionalities seem the most ideal for this project, the Emstat

Pico’s price is significantly higher than the other two boards, which isn’t

desirable.

The AD5940, although ambiguous at first regarding its ability to perform con-

current sensing, has an abundance of up-to-date resources to help develop

the board and its applications whilst also priced at a relatively affordable

12



rate, and therefore chosen for the purposes of this project.

2.3.3 Prior research on the GUI

The AD5940 comes compatible with its existing GUI from Analog Devices,

SensorPal, shown in figure 2.4. The functions of which inspired the GUI in

this project. SensorPal allows the user to choose from a list of measurement

techniques listed on the left hand side of the window. The user can select

a measurement technique by dragging the respective label into the ”Work

Area”, the output of which is then viewed through a plot of the data on the

bottom right corner. The x-axis data points can be viewed by hovering the

cursor over the plot, and the data can be exported into Excel by clicking the

Excel icon on the top right of the graph. There is also a frame in the middle

of the window which allows the user to customise the range and scan rate of

the output data.

SensorPal was undoubtedly going to be more sophisticated a platform when

compared to the GUI envisioned in this project. The features of SensorPal

not deemed necessary for the test-bench in this project was omitted for the

reasons that the GUI in this project focuses on its ability to display both the

potentiometric and amperometric results concurrently.

13



Figure 2.4: AD5940 compatible GUI, SensorPal

There are many libraries available that allow the implementation of a Python-

coded GUI on the Raspberry Pi. These include Tkinter, GTK+, QT, wxWidgets

and many more. When considering the timescale of this project, Tkinter was

deemed to be the most favourable Python library. This is because Tkinter

is the most commonly used and therefore arguably has the most resources

and help available online. Furthermore, the different libraries don’t seem to

vary too much in terms of their aesthetics, which made Tkinter the foremost

option for the implementation of a GUI in this project.
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Chapter 3

The AD5940 evaluation board

In this chapter, the research conducted on the AD5940 eval-

uation board are discussed and the board’s functions intro-

duced. In section 3.1, the different aspects of this test-bench

and each of their requirements is further detailed. The configu-

ration of the front end of the system is presented, including

the electrode connections to the board and the configura-

tions of the relevant registers on the board that need to be

dealt with for the purposes of this project. The chapter draws

to a close with section 3.4 which reveals the physical set up

of the components of the test-bench and the requirements of the

protocol with which the AD5940 will use to communicate and

interface to the Raspberry Pi, the implementation of which

will be detailed in the next chapter.
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3.1 Prior research on the AD5940

This section reviews the options considered at the initial planning stage con-

cluded from conducting the background research for the various aspects of

the test-bench. In the following sub-section 3.1.1, an overview of the func-

tions of the AD5940 deemed possibly necessary and relevant to this project

are delineated. This is followed by an explanation of the options to interface

to the AD5940 and the software requirements.

3.1.1 Overview of functions

The AD5940 has several input channels, including multiple external current

and voltage inputs from the sensors. A programmable switch matrix con-

nects the sensors to the measurement blocks and is used to multiplex multiple

electronic measurement devices to the same set of electrodes.

The AD5940 measurement board features an analog to digital converter

(ADC) with an input multiplexer (MUX) in front of the ADC to allow an

input measurement channel to be selected, as shown in the schematic in fig-

ure 3.1.

The sequencer provides control of multiple external sensor devices [6]. Pre-

programmed sequences can be triggered by general input/ output pins (GPIO)

which could be utilised in providing the desired output, potentiometry or am-

perometry.

The electrodes are attached to the board via a USB to crocodile cable [10].

In amperometry, the current response is measured either through the low

power transimpedance amplifier (LPTIA) for or high speed transimpedance

amlpifier (HSTIA) depending on the bandwidth of the signal. The tran-
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simpedance amplifiers (TIA) convert currents into voltages which are then

converted into digital values by the ADC to be outputted by the board [19].

Figure 3.1: AD5940 functional block diagram [6]

The signal from the electrodes to the output can be followed through the

flowchart in figure 3.2.

17



Figure 3.2: The signal path in the AD5940

3.1.2 Communicating with the AD5940

The AD5940 measurement blocks are usually controlled through SPI by the

ADuCM3029 microcontroller on the EVAL-ADICUP3029 (the main moth-

erboard) that comes with the evaluation kit [18]. The output of the mea-

surements is meant to be viewed over UART by connecting the board to a

computer using a micro USB [19, 9, 21]. Therefore a method of communi-

cation between the AD5940 and the Raspberry Pi considered at the start

of this project was through the UART. Directly intercepting the output be-

tween the AD5940 and the ADuCM3029 microcontroller at the SPI level,

bypassing the AduCM3029, to interface to the Raspberry Pi was also put

under consideration.

3.1.3 Software

The software components of this project consists of the GUI and the SPI

implementation. These are executed using various Python libraries on the
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Raspberry Pi.

A calibration algorithm must be incorporated within the GUI in order to cor-

respond the output of the potetionmetric measurements from the AD5940 to

readable outputs, such as pH values. This can be built by testing the probes

in solutions of a range of pH values. A trend, such as a linear equation [3,

24], should then be found from the values, the characteristics of which would

then be used to plot the output potentiometric data in real-time.

3.1.4 GUI

The GUI will be implemented on the Raspberry Pi in Python using the

Tkinter library. The outputted measurements are displayed through a real

time plot of the measured data using the Matplotlib library.

3.2 Electrode configuration

As the project progressed, it was clear that the AD5940 is unable to output

more than one measurement result per transaction. In spite of this, it was

decided that both the measurements can still be outputted if the ADC multi-

plexer can be configured to switch between its two inputs, amperometry and

potentiometry, at a regular time interval to output the results in a staggered

manner.

The electrodes for amperometric measurements will be connected to the

RE0, CE0, and SE0 pins of the AD5940 and the ISE used for measur-

ing potentiometric results will be connected to the analog input pin DE0,

the voltage of which can be directly measured and converted by the ADC.
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3.3 Registers configuration

The AD5940 evaluation board is configured through accessing certain regis-

ters on the board.

First, for the AD5940 to function a series of registers must be initialised and

set to a certain value, as shown in table 3.1.

Register Value

0x0908 0x02C9
0x0C08 0x206C
0x21F0 0x0010
0x0410 0x02C9
0x0A28 0x0009
0x238C 0x0104
0x0A04 0x4859
0x0A04 0xF27B
0x0A00 0x8009
0x22F0 0x0000

Table 3.1: AD5940 initialisation registers [6]

Certain bits of the configuration register, AFECON, with the address of

0x2000 [6], must also be set to enable the required functions of the AD5940,

such as the ADC. Additionally, the LPTIA measurement block must be con-

figured to perform amperometry measurements through the LPTIASW0 reg-

ister with address 0x20E4.

The results of the measurements are read from the ADC output from the

register named ADCDAT with address 0x2074, which produces a 16-bit un-
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signed integer output.

The input of the ADC can be configured using the register 0x21A8 named

ADCCON, by writing to it the sources of the positive and negative inputs to

its multiplexer. The inputs considered in this project for amperometric and

potentiometric measurements are detailed in tables 3.2 and 3.3 respectively.

ADCCON bits Value Description

[5:0] 00010 The Low Power TIA low pass output
[8:12] 00010 The Low Power TIA reference voltage

Table 3.2: Inputs to the ADC for amperometric measurements [6]

ADCCON bits Value Description

[5:0] 01101 DE0 pin voltage
[8:12] 01000 VBIAS CAP pin voltage reference, typically 1.11V [6]

Table 3.3: Inputs to the ADC for potentiometric measurements [6]

3.4 Communication with the Raspberry Pi

Since the AD5940 data sheet was very comprehensive about its SPI opera-

tions, the SPI protocol is used in the communication between the Raspberry

Pi and the AD5940. This meant that the EVAL-ADICUP3029 board needs

to be omitted from the system as it would use the SPI bus to communicate

with the AD5940 otherwise. Which also meant that the AD5940 source code

libraries provided by Analog Devices aren’t being used and the necessary

parts must be rewritten on the Raspberry Pi. However, using the SPI was

deemed to be the best compromise given the timescale of the project.
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3.4.1 Set up

The AD5940 board is set up with the Raspberry Pi as shown in figure 3.3.

Figure 3.3: AD5940 (top of the picture) interface with the Raspberry Pi
(bottom of the picture)

The Raspberry Pi acts as the master device and the AD5940 the slave device.

Four connections must be made between the two devices:

• Master Out Slave In (MOSI), data input line driven from the Raspberry

Pi to the AD5940.
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• Master In Slave out (MISO), data output line from the AD5940 to the

Raspberry Pi.

• Chip Select CS, enable signal indicating the beginning and end of trans-

action.

• Serial Clock (SCLK), clock signal of maximum frequency 16MHz driven

by the Rapsberry Pi to the AD5940.

The AD5940 is powered by the 3.3V supply pin on the Raspberry Pi. The

SPI interface is connected by four wires for the MOSI, MISO, CS and SCLK

pins on each device.

The Raspberry Pi is connected to a monitor, keyboard and mouse and is

powered through the mains supply. The GUI is displayed through the moni-

tor and is navigated using the keyboard and mouse. The GUI will be directly

run and displayed on the desktop on the Raspberry Pi interface, shown in

figure 3.4.
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Figure 3.4: The Raspberry Pi Desktop

3.4.2 AD5940 SPI protocol

The SPI protocol used in the communication between the AD5940 and the

Raspberry Pi relies on specific command bytes sent to the AD5940 to indicate

a certain action taking place, detailed in table 3.4.

Command Value Description

SPICMD SETADDR 0x20 Sets register address for SPI transaction
SPICMD READREG 0x6D Specifies SPI read trasnsaction
SPICMD WRITEREG 0x2D Specifies SPI write transaction

Table 3.4: AD5940 SPI commands [6]

Every transaction must start with indicating the address with which the mas-

ter device will be communicating to or receiving from, using the SPICMD SETADDR

command byte. This is done by:
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1. Driving CS low

2. Sending the command byte SPICMD SETADDR followed by the 16-bit ad-

dress of the register to read or write from.

3. Pulling CS high [6].

This is followed by the read or write command, done in a similar fashion.

Read:

1. Drive CS low

2. Send the command byte SPICMD READREG followed by a dummy byte

to initiate the SPI read.

3. Read returning 16-bit or 32-bit data.

4. Pull CS high [6].

Write:

1. Drive CS low

2. Send the command byte SPICMD WRITEREG followed by the 16-bit or

32-bit data to write to the register.

3. Pull CS high. [6]

When CS is driven low, a multiple of eight clock cycles must be generated

by the master device before the transaction [6].
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Chapter 4

Software

In this chapter, the implementations of the requirements men-

tioned hitherto in previous chapters will be presented and ex-

plained. First the SPI protocol, how it reads, writes and is

used to configure the AD5940 evaluation board into performing

the tasks required of it in this project. Then the back-end of

the GUI is shown, expanding on the two main parts: the cali-

bration and the real-time output of data; the finalised GUI

displayed is presented.

4.1 SPI implementation on the Raspberry Pi

The SPI interface is implemented on the Raspberry Pi using the spidev

library [8]. The Raspberry Pi pins are shown in figure 4.1, set up as shown

in figure 3.3 in section 3.4.1. Four main functions are used: readbytes,
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writebytes, xfer2 and cshigh [33].

Xfer2() xfer2 performs an SPI transaction, the chip-select signal is held

active in between blocks.

Cshigh cshigh controls the chip select signal. Since the AD5940 has an

active low chip select pin, setting cshigh = True will drive the pin low.

Readbytes() The readbytes function reads from the slave device. It doesn’t

control the chip select signal and therefore cshigh must be set to True before

the read transaction. The input argument to the readbytes function is the

number of bytes it should read.

Writebytes() The writebytes function writes to the register specified on

the slave device. Like the readbytes function, the chip select signal must be

controlled using cshigh for the transaction.
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Figure 4.1: Raspberry Pi pins [29]

4.2 SPI code

The SPI protocol on the Raspberry Pi is contained in one Python file,

ad5940spi.py. The file contains several functions that perform functions

that initialise, write to, and read from particular registers on the AD5940

board. The libraries spidev and time are imported.

4.2.1 Opening the SPI bus

To initiate and indicate the pins for the SPI connection, the bus on the Rasp-

berry Pi must be opened. The Raspberry Pi 4 has one SPI bus - the SPI bus

0. The Raspberry Pi has two chip select pins, CE0 and CE1, to allow it to

connect to more than one slave device. CE0 is used in this instance [15].
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The SPI mode dictates the edge of the clock on which data is sampled and

shifted out. A total of 4 modes exist when combined with the two different

states of the clock polarity [12, 7]. The clock polarity can be either high or

low during the idle state, which defines the two segments of time on either

end of the transaction during which the CS goes from high to low at the

beginning of the transaction and back up to high at the end. The AD5940’s

SPI timing specifications require the MOSI and MISO to be launched on the

falling edge of the serial clock (SCLK) and sampled on the rising edge of the

SCLK. The clock polarity of the AD5940 seems to be 0 judging from the SPI

timing diagram, shown in figure 4.2. Which means that the idle state of the

clock signal is low [7] and therefore needs to operate on SPI mode 1.

Figure 4.2: The AD5940 SPI timing diagram

Another requirement of the SPI transaction to the AD5940 is that the speed

of the serial clock and thus the SPI transaction has to be slower than the

system clock on the AD5940, which is 16MHz [6].

1 #chip select pin

2 CS = 0

3
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4 #SPI bus 0 on the Pi

5 bus = 0

6

7 #enable spi

8 spi = spidev.SpiDev ()

9

10 #open connection to bus and chip select pin

11 spi.open(bus , CS)

12

13 spi.max_speed_hz = 5000

14 spi.mode = 1

Listing 4.1: SPI set-up

4.2.2 Command bytes

The command bytes used to indicate a certain type of transaction within the

AD5940 detailed in table 3.4 are defined.

1 SPICMD_SETADDR = 0x20

2 SPICMD_READREG = 0x6D

3 SPICMD_WRITEREG = 0x2D

4 SPICMD_READFIFO = 0x5F

Listing 4.2: SPI command bytes

4.2.3 Register initialisation

The required initialisation of the registers shown in table 3.1 is implemented,

in the methods described in sections 3.4.2 and 4.1.
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1 def Ad5940_Init (): #initialising the AD5940 after every reset

2

3 add_1 = [SPICMD_SETADDR , 0x0908]

4 spi.xfer2(add_1)

5 init_1 = [SPICMD_WRITEREG , 0x02C9]

6 spi.xfer2(init_1)

7 add_2 = [SPICMD_SETADDR , 0x0C08]

8 spi.xfer2(add_2)

9 init_2 = [SPICMD_WRITEREG , 0x206C]

10 spi.xfer2(init_2)

11 add_3 = [SPICMD_SETADDR , 0x21F0]

12 spi.xfer2(add_3)

13 init_3 = [SPICMD_WRITEREG , 0x0010]

14 spi.xfer22(init_3)

15 add_4 = [SPICMD_SETADDR , 0x0410]

16 spi.xfer(add_4)

17 init_4 = [SPICMD_WRITEREG , 0x02C9]

18 spi.xfer2(init_4)

19 add_5 = [SPICMD_SETADDR , 0x0A28]

20 spi.xfer2(add_5)

21 init_5 = [SPICMD_WRITEREG , 0x0009]

22 spi.xfer2(init_5)

23 add_6 = [SPICMD_SETADDR , 0x238C]

24 spi.xfer2(add_6)

25 init_6 = [SPICMD_WRITEREG , 0x0104]

26 spi.xfer2(init_6)

27 add_7 = [SPICMD_SETADDR , 0x0A04]

28 spi.xfer2(add_7)

29 init_8 = [SPICMD_WRITEREG , 0x4859]

30 spi.xfer2(init_8)

31 add_8 = [SPICMD_SETADDR , 0x0A04]

32 spi.xfer2(add_8)

33 init_8 = [SPICMD_WRITEREG , 0xF27B]

34 spi.xfer2(init_8)

35 add_9 = [SPICMD_SETADDR , 0x0A00]
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36 spi.xfer2(add_9)

37 init_9 = [SPICMD_WRITEREG , 0x8009]

38 spi.xfer2(init_9)

39 add_10 = [SPICMD_SETADDR , 0x22F0]

40 spi.xfer2(add_10)

41 init_10 = [SPICMD_WRITEREG , 0x0000]

42 spi.xfer2(init_10)

43

44 #configuring the LPTIA

45 lptiasw0_addr = [SPICMD_SETADDR , 0x20E4]

46 spi.xfer2(lptiasw0_addr)

47 lptiasw0_conf = [SPICMD_WRITEREG , 0x302C]

48 spi.xfer2(lptiasw0_conf)

49

50 #AFECON

51 AFE_addr = [SPICMD_SETADDR , 0x2000]

52 spi.xfer2(AFE_addr)

53 AFE_conf = [SPICMD_WRITEREG , (0b11 <<7)] # enable ADC

power and conversion start enable

54 spi.xfer2(AFE_conf)

Listing 4.3: Initialisation registers

4.2.4 Reading data from the ADC

The data from the amperometric and potentiometric measurements are out-

putted by the ADC through the ADCDAT register and returned as a 16-bit

unsigned integer, val.

1 def SpiRead_ADCDAT ():

2 val = None

3

4 ResultsAddr = [SPICMD_SETADDR , 0x2074]
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5 spi.cshigh = True

6 spi.writebytes(ResultsAddr)

7 spi.cshigh = False

8 #time.sleep (0.1) #pause

9

10 spi.cshigh = True

11 Read_init = [SPICMD_READREG , 0b00] #initialise read

12 spi.writebytes(Read_init)

13 val = spi.readbytes (2) #reading 2 bytes of data from

ADCDAT register

14 spi.cshigh = False

15

16 return val

Listing 4.4: SPI read function

4.2.5 Concurrent measurement configuration

To output both amperometric and potentiomtric measurements onto the

Raspberry Pi, the input to the ADC must be switched between the output

of the LPTIA for amperometry and the analog DE0 pin for potentiometry.

The following functions configure the ADC for amperometry (ADCCON amp)

and potentiometry (ADCCON pot) through the ADCCON register by writing

to it the bits that specify the positive and negative inputs mentioned in sec-

tion 3.3.

1 AMP_MUXP = 0b00010 #LPTIA positive input

2 AMP_MUXN = 0b00010 #LPTIA negative input

3 POT_MUXP = 0b01101 #DE0

4 POT_MUXN = 0b01000 #VBIAS_CAP

5

6 def ADCCON_amp (): #amperometric inputs
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7

8 ConfAddr = [SPICMD_SETADDR , 0x21A8]

9 spi.cshigh = True

10 spi.writebytes(ConfAddr)

11 spi.cshigh = False

12

13 spi.cshigh = True

14 spi.writebytes ((AMP_MUXN <<8)|( AMP_MUXP))

15 spi.cshigh = False

16

17 def ADCCON_pot (): #potentiometric inputs

18

19 ConfAddr = [SPICMD_SETADDR , 0x21A8]

20 spi.cshigh = True

21 spi.writebytes(ConfAddr)

22 spi.cshigh = False

23

24 spi.cshigh = True

25 spi.writebytes ((POT_MUXN <<8)|( POT_MUXP))

26 spi.cshigh = False

Listing 4.5: SPI measurement configuration

4.3 The GUI

4.3.1 GUI layout

The GUI is built on the Raspberry Pi using the Tkinter library in Python

[30]. The Tkinter library provides three built-in layout managers, pack,

grid and place. In this project, the grid manager is chosen to specify the

position of elements in the GUI without having to use the absolute position-

ing specified by pixels as is the case with the place manager, or the inability
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to customise at all in the case of the pack manager.

An initial design of the GUI layout is shown in figure 4.3. The grid manager

is used for the GUI window and the frame widget, the latter of which is used

to contain the calibration features and the GUI title. The real-time plot is

displayed on the Tkinter canvas widget. The plot comes with a navigation

toolbar feature which allows the user to zoom into the plot, save the plot and

view values on the plot.

Figure 4.3: Initial design of the GUI layout

The final GUI implementation is shown in figure 4.4.
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Figure 4.4: Final GUI design

4.3.2 Calibration

The calibration is done using the polyfit function of the NumPy library [17].

An input of the pH value from the user and the resulting output voltage

corresponding to that inputted pH will be appended to their respective lists.

These lists will correspond to the x and y values used to calculate attributes

of the line of best fit. The attributes, the gradient and the y-intercept, of

that straight line is found using the polyfit function. Using these attributes,

the voltage outputted by the measurement blocks can then be mapped to

their approximate corresponding pH, and subsequently plotted in real-time.

The function get mb obtains the global variables m and b which represent

the gradient and y-intercept respectively, later used in the real-time plot of

the potentiometric results.
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1 m = None

2 b = None

3

4 def get_mb ():

5

6 global m #gradient

7 global b #y intercept

8

9 x = [3, 5, 7, 9] #pH values

10 y = [3.3211 , 2.0242 , 1.8564 , 1.8615]

11 #voltage values corresponding to the pH values

12

13 m, b = np.polyfit(x, y, 1)

14 #potentionmetric results = m*pH + b

Listing 4.6: Function to find line of best fit attributes

With the default values of x and y in the function, the calculated m and b

are: -0.227 and 3.630 respectively.

The x list correspond to the pH values and the y lists, their respective po-

tentiometric voltages. The GUI, as shown in figure 4.4, features an entry

box for the user input of pH values which, when combined with the SPI read

of the ADCDAT register in the AD5940 would ideally provide the values in

the x and y lists instead. In this case however, the values are in the func-

tion by default. The potentiometric voltage values are obtained from the

first value of each pH from pre-obtained data. The get mb function is called

when the ”Calibrate” button is clicked. In this case, the button needs to

only be clicked once before the m and b values are obtained.

1 button_calibrate = ttk.Button(frame , text="Calibrate",
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2 command=get_mb)

Listing 4.7: Calibration button code

4.3.3 Real-time plot

The output data is plotted using the Matplotlib library [26]. The plot in

real-time is achieved using its animation function [32, 13], which samples the

input from the SPI at a regular interval and plots it against time.

With no real data input from the SPI bus, previously simulated data for

a constant pH of 9 was read from a text file, Potentiometry.txt and out-

putted at time intervals of one second for each value in the file. The resulting

values of m and b from the calibration function, get mb, is used to convert

the outputted potentiometric voltage into pH values on line 21.

The potentiometric plot function is shown below, the amperometric function

plots the amperometric current in a similar way except for the conversion

into pH.

1 yp = []

2 t = []

3 fig_p = plt.Figure(figsize = (9, 4))

4 p = fig_p.add_subplot (111)

5 pot_voltage = []

6 indexp = count()

7

8 def animate_p(i, t, yp):

9 global pot_voltage

10

11 if m != None:

38



12 data_pot = open('Potentiometry.txt', "r")

13 lines = data_pot.readlines ()

14 data_pot.close ()

15

16 for num in lines:

17 value = float(num)

18 pot_voltage.append(value)

19

20 xp = pot_voltage[next(indexp)]

21 pH_pot = (xp - b)/m

22 yp.append(pH_pot)

23 t.append(dt.datetime.now().strftime('%H:%M:%S'))

24 t = t[ -50:]

25 yp = yp[-50:] #x and y limits t-50

26

27 p.clear ()

28 p.plot(t, yp, color="g")

29 p.set_title("Potentiometry pH")

30 p.set_xticklabels(t, rotation =45, ha='right ')

31 p.set_ylabel("pH")

32 fig_p.subplots_adjust(left =0.15 , bottom =0.15)

Listing 4.8: Real-time plotting function

Since the values of the variables m and b are initialised to the type None

the potentiometric data can only get plotted once the values of m and b have

been calculated through calibration. The logic of this part of the function is

shown in a flow diagram in figure 4.5 where the user actions for each stage

of the process is situated in the orange boxes on the right.

The for loop converts the strings into integers, int, form as the data read

from the text file is stored as an array of strings.
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Figure 4.5: Logic flowchart for function animate p

The animate function is called by the FuncAnimation class [27] in the

Animation object of Matplotlib:

1 ani_pot = animation.FuncAnimation(fig_p , animate_p ,

2 fargs=(t, yp), interval =1000)

Listing 4.9: Real-time plotting potentiometric results code

The input argument, interval, indicates the time interval between plotting
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each point in milliseconds. Here one point is plotted every second to allow

the user to see the data being plotted and catch any anomalies.
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Chapter 5

Components testing

This chapter explains the way different parts of the system is

tested, the results from those tests and the conclusions and

evaluation drawn from them.

5.1 The SPI connection

The SPI functions on the Raspberry Pi was tested using the init check and

CS low function. The readbytes function is used to read from the identifica-

tion registers of the AD5940 which should return constant values of 0x4144.

The CS low function is used to test the cshigh structure of spidev, using a

multi-meter. This made sure of the kinf of change in the state of the CS pin

on the AD5940 as a result of cshigh being set to True or False.

1

2 def init_check ():

3
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4 check_addr = [SPICMD_SETADDR , 0x0400] #ADIID test

register

5 spi.cshigh = True #cs low

6 #CS_status = GPIO.input(channel)

7 #print(CS_status)

8 spi.writebytes(check_addr)

9 spi.cshigh = False

10

11 spi.cshigh = True

12 Read_check = [SPICMD_READREG , 0x00]

13 spi.writebytes(Read_check)

14 var = spi.readbytes (1)

15 spi.cshigh = False

16

17 print(hex(var [0]))

18

19 def CS_low ():

20 spi.cshigh = True

Listing 5.1: Testing the SPI transaction

However, the SPI read bus returned with 0x0. This would normally be de-

bugged by connecting the pins to the oscilloscope for the SPI transaction

signals to be looked at in detail. In the current circumstances this was not

possible.

The problem could be that the AD5940 needs to receive a multiple of eight

clock cycles after the CS signal is brought low, which hasn’t been imple-

mented in the software part of the system yet, for the reason that the SPI

protocol implemented by the spidev library has transaction and switching

delays which need to be inspected before determining the right amount of

clock cycles to implement following the CS signal. The connection between

the Raspberry Pi and the AD5940 has therefore not been successfully estab-
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lished from theory.

5.2 Potentiometric tests

Should the SPI connection work, the potentiometric measurements would

be tested with the ISE submerged in a solution such as Hydrogen Peroxide.

This can also be tested with a battery connected to the analog input pin,

DE0 and ground without access to laboratory equipment and solutions.

5.3 Amperometric tests

Similarly, the amperometric measurements would ideally be tested with the

platinum electrodes submerged in the same solution as the ISE in poten-

tiometry, such as Hydrogen Peroxide. This can also be tested with a battery

connected in parallel with a resistor to generate a current from ground to

the CE0 counter electrode pin. This current can then be measured by the

transimpedance amplifier.
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Chapter 6

Conclusion

6.1 Revisiting project aims and deliverables

The project deliverables stated the following:

System requirements

�3 To explore the set up of a concurrent amperometry and potentiometry

measurements using embedded, off-the-shelf components

� To test the individual components of the test-bench system and evalu-

ate the functionalities of the system as a whole

�3 A GUI for displaying real-time potentiometry and amperometry results

�3 The test-bench should enable user to calibrate output data by measur-

ing results from input pH
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6.2 Evaluation

The requirements for the GUI have been met, although the user-friendliness

and aesthetic of the interface could be improved upon.

The system requirements were more difficult to meet and assembling the dif-

ferent components of the test-bench was challenging. The SPI connection

between the AD5940 and the Raspberry Pi could not be properly tested

with the lack of an oscilloscope and lab equipment. Fortunately, some parts

of the protocol were debugged using a multimeter. The code relating to the

SPI interface has been written to work theoretically, shown subsequently in

section 7.

Unfortunately, the different components of the test-bench could not be tested

together and ultimately the test-bench could not be tested as a whole on pH

solutions due to the lack of lab access.

The practical aspects of the project became more orientated towards the

research of the AD5940 module, its ability to perform concurrent sensing

with the Raspberry Pi, and the theoretical usage of the two devices together

in providing a GUI for use in the test-bench.
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Chapter 7

Future work

7.1 SPI Incorporated functions

The functions described previously in sections 4.3.2 and 4.3.3 will need to

be altered when communicating to the AD5940 via the SPI bus using func-

tions for the SPI protocol detailed in section 4.2.

Firstly, the get mb function which obtains the gradient and y-intercept of

the line of best fit for potentiometric data must correspond the user-input to

the data read by the SPI bus. This is done by appending the user-input of

the pH to an array named pHs, and appending the data read by the SPI bus

to an array named op.

1 m = None

2 b = None

3 pHs = []

4 op = []

5

6 def get_mb(pH_val):

7
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8 global pHs

9 global op

10 global m #gradient

11 global b #y intercept

12

13 pHs.append(pH_val)

14 val = SpiRead_ADCDAT () #read data from ADC

15 op.append(val)

16

17 m, b = np.polyfit(pHs , op , 1)

18 #ADCDAT = m*pH + b

Listing 7.1: Line of best fit function with SPI input

The get mb function is called when the ”Calibrate” button is clicked on, as

before. The user-inputted pH value is taken as a variable, pH val, from the

entry box, entry pH.

1 entry_pH = tk.Entry(frame , textvariable=pH_val)

2 button_calibrate = ttk.Button(frame , text="Calibrate",

3 command=get_mb(pH_val))

Listing 7.2: SPI set-up

The animation function must also be altered such that the input data to

the real-time plot isn’t obtained from a text file but rather from the SPI

input directly. Every time the animate p function is called it calls the

SpiRead ADCDAT function from ad5940spi.py file which reads from the

ADCDAT register returning a 16-bit unsigned number.

1 yp = []

2 t = []

3 fig_p = plt.Figure(figsize = (9, 4))
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4 p = fig_p.add_subplot (111)

5 pot_voltage = None

6

7 def animate_p(i, t, yp):

8 global pot_voltage

9

10

11 if m != None:

12 pot_voltage = ad5940spi.SpiRead_ADCDAT ()

13 pH_pot = (pot_voltage - bp)/mp

14 yp.append(pH_pot)

15

16 t.append(dt.datetime.now().strftime('%H:%M:%S'))

17 t = t[ -50:]

18 yp = yp[-50:] #x and y limits t-20

19 p.clear ()

20 p.plot(t, yp, color="g")

21

22 p.set_title("Potentiometry pH")

23 p.set_xticklabels(t, rotation =45, ha='right ')

24 p.set_ylabel("pH")

25 fig_p.subplots_adjust(left =0.15 , bottom =0.15)

Listing 7.3: Real-time plotting function with SPI

7.2 Further automation

The system could benefit from being more automated, for optimising the

purposes of the test-bench serving as a control for gauging electrochemical

measurements as explained in the introduction (section 1.1) of this report.

One way to further automise this test-bench is to include a flow control valve

to precisely inject the solvents.
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7.3 Reference voltages and electrode config-

uration

For the purposes of concurrent sensing, there need to be tests to determine

whether the amperometric circuit and the potentiometric circuit can utilise

the same reference electrode as this may affect the results chemically.

7.4 Using the sequencer

The sequencer on the AD5940 has the capability to have up to 4 prepro-

grammed sequences which can be triggered by GPIO pins to implement

a predestined function such as performing potentiometric or amperometric

measurements.

The sequences’ most significant bit (MSB) indiicates the function it is to

perform, such as the write or the timer function. This is followed by a 16-

bit address between the values 0x0000 and 0x21FC. The address field in the

sequence is only 7-bits wide, namely bits [8:2] of the address used by the

external controller [6]. This is then followed by the 24-bit wide data to be

written into the address.

7.5 I2C protocol

I2C is possible on the board albeit the seemingly lack of information in the

datasheets and source code regarding how it can be used to access the reg-

isters on the AD5940 to configure the board and read the results. Though if

it were possible, it would make communicating with the Raspberry Pi easier

as the information for the library for I2C protocol, SMBus, seems to be more
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accessible and easier to implement.

Using the I2C protocol would also allow simultaneous usage of the microcon-

troller unit (MCU), which means the source code from the AD5940 library

can be included and therefore wouldn’t have to be re-written on the Rasp-

berry Pi.
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